On the existence of regions with minimal third degree integration formulas
نویسندگان
چکیده
منابع مشابه
On the Existence of Regions with Minimal Third Degree
A. H. Stroud has shown that n + 1 is the minimum possible number of nodes in an integration formula of degree three for any region in E„. In this paper, in answer to the question of the attainability of this minimal number, we exhibit for each n a region that possesses a third degree formula with n + 1 nodes. This is accomplished by first deriving an in + 2)-point formula of degree three for an...
متن کاملA Study on the Existence of Limit Cycles of a Planar System with Third-Degree Polynomials
The focus of the paper is mainly on the existence of limit cycles of a planar system with thirddegree polynomial functions. A previously developed perturbation technique for computing normal forms of differential equations is employed to calculate the focus values of the system near equilibrium points. Detailed studies have been provided for a number of cases with certain restrictions on system...
متن کاملazerbaijans political development after the collapse of soviet union and implication on relation with the islamic republic of iran
در فصل اول این پایاین نامه در خصوص تاریخ کشور اذربایجان قبل و بعد از جدایی این کشور از ایران مورد بررسی قرار گرفته است ودر فصل دوم تحولات سیاسی این کشور بعد از 1991 و در واقع بعد از فروپاشی شوروی و دولتهایی که روی کار امدند در از جمله دولت ابولفضل ایلچی بیگ،دولت حیدر علی اف وبعد از او پسرش الهام علی اف و نگرش هرکدام از این دولتها به سیاسیت خارجی اذربایجان مورد اشاره قرار گرفته است.در ودر فصل سو...
Integration formulas for the conditional transform involving the first variation
In this paper, we show that the conditional transform with respect to the Gaussian process involving the first variation can be expressed in terms of the conditional transform without the first variation. We then use this result to obtain various integration formulas involving the conditional $diamond$-product and the first variation.
متن کاملOn the Size of Minimal Unsatisfiable Formulas
An unsatisfiable formula is called minimal if it becomes satisfiable whenever any of its clauses are removed. We construct minimal unsatisfiable k-SAT formulas with Ω(nk) clauses for k ≥ 3, thereby negatively answering a question of Rosenfeld. This should be compared to the result of Lovász [Studia Scientiarum Mathematicarum Hungarica 11, 1974, p113-114] which asserts that a critically 3-chroma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1970
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-1970-0277112-8